
您似乎是从中国境内访问我们的网站的。请导航至我们的优化版网站：amazonaws-china.com。

Create a Free

AWS Account

Search

Search

Posts by Product

Amazon Aurora

AWS Database

Migration Service

(DMS)

Amazon

DynamoDB

Amazon EC2

Amazon

ElastiCache

Amazon

Elasticsearch

Service

AWS IOT

Amazon Kinesis

AWS Lambda

Amazon RDS for

MySQL

Amazon RDS for

Oracle

AWS Database Blog

Amazon Aurora under the hood:
quorums and correlated failure

by Anurag Gupta | on 14 AUG 2017 | in Amazon Aurora, Aurora, Database | Permalink | 

Comments |  Share

Anurag Gupta runs a number of AWS database services, including Amazon
Aurora, which he helped design. In this Under the Hood series, Anurag
discusses the design considerations and technology underpinning Aurora.

Amazon Aurora storage is a highly distributed system that needs to meet the

stringent performance, availability, and durability requirements of a high-end

relational database. This post is the first of a four-part series that covers some

of the key elements of our design.

There isn’t a lot of publicly available material discussing tradeoffs in real-

world durability, availability, and performance at scale. Although this series is

based on the considerations involved in designing a transactional database, I

believe it should be relevant to anyone architecting systems involving the

coordination of mutable distributed state.

In this first post, I discuss how we arrived at the decision to use quorums for

Aurora storage and why we distribute six copies of data across three

Availability Zones (AZs). Some of this material is also discussed in our recent

SIGMOD paper.

Why distributed storage is a good idea, but hard to do well
Let’s first discuss why distributed storage is a good idea. It’s easy to make a

database run fast by collocating both the database software and the storage

on a single box. The problem is that boxes fail. It takes time to recover from a

backup after a failure. Many systems can’t tolerate losing recent data that

hasn’t been backed up yet.

Beyond accounting for failures, separating the database instance from its

storage improves flexibility. Customers shut databases down. They size them

up and down. They add and remove read replicas. Decoupling the storage

from the database makes these operations easy, since the underlying storage

 

https://aws.amazon.com/optin/?country=CN&token=9a8724f6-b755-4d72-a19c-9306ad9aa976
http://aws.amazon.com/free/
https://aws.amazon.com/blogs/database/category/aurora/
https://aws.amazon.com/blogs/database/category/dms/
https://aws.amazon.com/blogs/database/category/dynamodb/
https://aws.amazon.com/blogs/database/category/ec2/
https://aws.amazon.com/blogs/database/category/elasticache/
https://aws.amazon.com/blogs/database/category/elasticsearch/
https://aws.amazon.com/blogs/database/category/iot/
https://aws.amazon.com/blogs/database/category/kinesis/
https://aws.amazon.com/blogs/database/category/lambda/
https://aws.amazon.com/blogs/database/category/rds-mysql/
https://aws.amazon.com/blogs/database/category/rds-oracle/
https://aws.amazon.com/blogs/database/
https://aws.amazon.com/blogs/database/category/database/amazon-aurora/
https://aws.amazon.com/blogs/database/category/aurora/
https://aws.amazon.com/blogs/database/category/database/
https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-quorum-and-correlated-failure/
https://commenting.awsblogs.com/embed.html?disqus_shortname=aws-database-blog&disqus_identifier=1489&disqus_title=Amazon+Aurora+under+the+hood%3A+quorums+and+correlated+failure&disqus_url=https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-quorum-and-correlated-failure/
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/relational-database/
http://www.allthingsdistributed.com/files/p1041-verbitski.pdf
https://aws.amazon.com/?nc2=h_lg

Amazon RDS for

PostgreSQL

Amazon RDS for

SQL Server

AWS Schema

Conversion Tool

(SCT)

RSS Feed

 Subscribe to this

blog's feed

Recent Posts

Introducing

Amazon S3 and

Microsoft Azure

SQL Database

Connectors in AWS

Database Migration

Service

Viewing Amazon

Elasticsearch

Service Slow Logs

Replicating Amazon

EC2 or On-Premises

SQL Server to

Amazon RDS for

SQL Server

Querying on

Multiple Attributes

in Amazon

DynamoDB

Automating Cross-

Region and Cross-

Account Snapshot

Copies with the

Snapshot Tool for

Amazon Aurora

Automating SQL

Caching for Amazon

can just be detached and reattached rather than having to be recreated in a

new location. Data has gravity in a way that compute does not.

Of course, moving storage away from compute just creates a dependency on

still more devices that can independently fail. That’s why people use

replication—either synchronous or asynchronous. If failures are independent,

then replication improves durability.

But replication has its own problems. In synchronous replication, all copies

must acknowledge before you consider a write to be durable. This approach

puts you at the mercy of the slowest disk, node, or network path.

Asynchronous replication improves latency, but can result in data loss if

there’s a failure before data is replicated and made durable. Neither option is

attractive. Failures require changes to the replica membership set. This

approach is also awkward. Recreating a dropped replica is expensive, so

people generally are conservative doing so. This conservatism means that you

might see a few minutes of unavailability before the replica is fenced off.

A quorum model
Aurora instead uses a quorum model, where you read from and write to a

subset of copies of data. Formally, a quorum system that employs V copies

must obey two rules. First, the read set, V , and the write set, V , must overlap

on at least one copy.

This approach means that if you have three copies of data, the read set and

the write set can be two, ensuring each sees the other. This rule ensures that a

data item is not read and written by two transactions concurrently. It also

ensures that the read quorum contains at least one site with the newest

version of the data item.

Second, you need to ensure that the quorum used for a write overlaps with

prior write quorums, which is easily done by ensuring that V > V/2. This rule

ensures that two write operations from two transactions cannot occur

concurrently on the same data item. Here are some possible quorum models.

V (#copies) V (write quorum) V (read quorum)

1 1 1

2 2 1

3 2 2

4 3 2

5 3 3

6 4 3

7 4 4

Quorum systems have some nice properties. They can deal with the long-term

failure of a node as easily as they deal with a transient failure (for example,

due to a reboot) or slowness of one of the participants.

r w

w

w r

 

https://aws.amazon.com/blogs/database/category/rds-postgresql/
https://aws.amazon.com/blogs/database/category/rds-sql-server/
https://aws.amazon.com/blogs/database/category/schema-conversion-tool-sct/
https://aws.amazon.com/blogs/database/feed/
https://aws.amazon.com/blogs/database/introducing-amazon-s3-and-microsoft-azure-sql-database-connectors-in-aws-database-migration-service/
https://aws.amazon.com/blogs/database/viewing-amazon-elasticsearch-service-slow-logs/
https://aws.amazon.com/blogs/database/replicating-amazon-ec2-or-on-premises-sql-server-to-amazon-rds-for-sql-server/
https://aws.amazon.com/blogs/database/querying-on-multiple-attributes-in-amazon-dynamodb/
https://aws.amazon.com/blogs/database/%C2%AD%C2%AD%C2%ADautomating-cross-region-cross-account-snapshot-copies-with-the-snapshot-tool-for-amazon-aurora/
https://aws.amazon.com/blogs/database/automating-sql-caching-for-amazon-elasticache-and-amazon-rds/
https://aws.amazon.com/?nc2=h_lg

ElastiCache and

Amazon RDS

Migrating a SQL

Server Database to

a MySQL-

Compatible

Database Engine

Using Amazon

Redshift for Fast

Analytical Reports

Testing Amazon

RDS for Oracle:

Plotting Latency

and IOPS for OLTP

I/O Pattern

Get Started with

Amazon

Elasticsearch

Service: Filter

Aggregations in

Kibana

Useful
Documentation Links

Cloud Databases

with AWS

Amazon RDS

AWS Database

Migration Service

Amazon

DynamoDB

Amazon

ElastiCache

Amazon Redshift

AWS Blogs

AWS Blog

AWS Big Data

The Aurora quorum

In Aurora, we use a six-way quorum spread across three AZs, with a write set

of four and a read set of three. We issue writes to all six copies of data and

acknowledge the write as complete once we obtain an acknowledgement

from four of the six copies. If one of the nodes is running slow, it’s fine—the

others respond quickly and this node catches up when it can. If one of the

nodes is briefly unavailable, it’s also fine—there’s no loss of write or read

availability and the node continues accepting requests when back up. And, if

the node is permanently down, we’ll figure out that it hasn’t responded for a

while and introduce a new member to the quorum set using a membership

change protocol.

So why six copies? The preceding statements are true even with 2/3 quorum

set, which is popular in many production distributed systems. Such systems

can transparently handle one fault. They rely on it being extremely unlikely

that two independent faults could occur during the time it takes to repair one

of them.

The problem with 2/3 quorums is that not all faults are independent. Let’s say

you had a 2/3 quorum with one copy of data in each of three AZs. In a large

distributed system, such as the ones that we operate in the AWS Cloud, there’s

a continuous low-level background noise of node, disk, and network path

failures. These are, in and of themselves, entirely fine. A 2/3 quorum tolerates

these failures transparently. The background noise is low enough that it is

extremely unlikely that we would see two faults at the same time.

However, the reason we separate AWS Regions into AZs is to create areas of

fault isolation. Let’s imagine that one of the three AZs in an AWS Region goes

down. It might be down permanently, because of a roof collapse, fire, flood,

tornado, or similar. Or it might be down for a short period of time because of

a power outage, bad software deployment, or similar.

That failure causes one copy to be lost in each and every quorum at the same

time. The small number of quorums that were already handling a fault now

have a dual fault. At that point, you only have 1/3 copies readable, and can’t

ensure that this copy has seen all writes. This copy might have been the one

that was skipped when the other two were written. In such a case, the quorum

is not writable, readable, or repairable, and the database volume is lost.

A six-copy quorum model can tolerate losing an entire AZ without losing write

availability and is able to lose an AZ plus one additional fault without losing

data. As long as you have valid read quorum, you can rebuild additional copies

of data to obtain a full repaired quorum. It’s easy to see that an “AZ+1” fault

model requires a minimum of three AZs and two copies in each of those three

AZs. You can run a 3/4 quorum or a 3/5 quorum and still meet the “AZ+1”

objective, but only in environments with four or five independent AZs in the

region.

Are six copies sufficient?

Six copies are necessary, but are they sufficient? Reasoning about this question

 

https://aws.amazon.com/blogs/database/automating-sql-caching-for-amazon-elasticache-and-amazon-rds/
https://aws.amazon.com/blogs/database/migrating-a-sql-server-database-to-a-mysql-compatible-database-engine/
https://aws.amazon.com/blogs/database/using-amazon-redshift-for-fast-analytical-reports/
https://aws.amazon.com/blogs/database/testing-amazon-rds-for-oracle-plotting-latency-and-iops-for-oltp-io-pattern/
https://aws.amazon.com/blogs/database/get-started-with-amazon-elasticsearch-service-filter-aggregations-in-kibana/
https://aws.amazon.com/products/databases/
https://aws.amazon.com/rds/
https://aws.amazon.com/dms/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/redshift/
http://aws.amazon.com/blogs/aws/
https://blogs.aws.amazon.com/bigdata/
https://aws.amazon.com/?nc2=h_lg

AWS Security

AWS Compute

AWS Partner

Network

AWS Internet of

Things Blog

requires thinking through mean time to failure (MTTF) and mean time to

repair (MTTR). Losing the ability to repair a volume requires losing read

availability. In a six-copy quorum model, losing read availability means losing

four of the six copies of data—either with four independent failures, two

independent failures and an AZ failure, or two independent AZ failures. The

most likely of these is that one had a failed node, then a full AZ failure, then

another node died while we were in the midst of repairing the first failed

node.

That’s unlikely, but for a bad enough MTTF and MTTR, it can happen. Past a

point, it is hard to improve MTTF and the likelihood of independent failures.

So our best bet is to reduce MTTR.

In Aurora, we do this by breaking up the database volume into 10 GB chunks,

each replicated independently into protection groups using six copies. A large

database volume might spread over thousands of nodes. At 10 GB, on a 10

Gbit network, it takes under a minute to repair quorum. Even allowing for

detection time and hysteresis to avoid repairing a transient issue, MTTR only is

a few minutes. Because the other failures are independent of this one, it’s

unlikely that you’ll see three additional independent failures or an AZ failure

and one additional failure in this time frame. The probability is so low that

you can even introduce faults. Software deployments to the storage tier are

straightforward. You can simply stop a node, install software, and restart—the

system transparently accommodates this fault and can absorb yet more.

This approach also helps with heat management. You can simply mark a

segment on a hot disk or node as dead, and it is automatically repaired onto

another node in the storage fleet.

But what if we actually had a fire or flood and lost an AZ for months while we

rebuilt? In that case, we’d have lost two of our six copies, and any additional

double-fault or loss of an AZ loses our database volumes. Call us paranoid, but

we actually worry about things like this—the MTTR to rebuild an AZ after a

catastrophic failure is high.

We recently deployed software to introduce a degraded mode for such cases.

In this mode, we can behind the scenes reduce to a 3/4 write quorum and 2/4

read quorum on the long-term loss of an AZ. We can then repair back to a full

six-copy 3-AZ quorum once it is again available. This approach allows us to

repair from a transient loss of one of the remaining AZs and to tolerate one

additional failure without losing write availability.

In the next few posts, I’ll discuss how Aurora deals with the drawbacks of the

approach sketched preceding:

Performance (quorum reads are slow)

Cost (six copies are expensive)

Availability (membership changes are expensive when you break up a

volume into small chunks)

 

http://blogs.aws.amazon.com/security/
https://aws.amazon.com/blogs/compute/
https://aws.amazon.com/blogs/apn/
https://aws.amazon.com/blogs/iot/
https://aws.amazon.com/?nc2=h_lg

